

<u>Electric Flightworthy Lightweight Integrated</u> <u>Thermally-Enhanced powertrain System (eFLITES)</u>

Mr. John Yagielski, GE Research

ARPAe Project: 2238-1510 DE-AR0001353

8-fold increase in Power Density

- Modular SiC inverters
- Embedded direct-drive motor
- High temperature
 - Altitude-capable HV insulation
- Power electronics

- Direct-cooled motor armature
- Inverters w/additively-manufactured cold-plate

Suite of transformational technologies to raise power density of GE's hybrid-electric systems to enable all-electric propulsion

REEACH / ASCEND / CABLES Annual Program Review Meeting June 28-30, 2022

eFLITES Project Overview

sCO₂ pump

GE Research

Thermal

HV-coil directcooled by sCO₂

sCO₂-based Management

GE Aviation

Mechanical Integration Performance Modeling

System Integration

Cost / reliability

GE Research GE Additive

Additively manufactured cold plate

GE Research

Modular dielectric-filled motor drive

Motor-Inverter

Integration

WISCONSIN

GE Research

MW-class VSC

Alternate: Current Source Inverter

GE Research

High Temperature SiC module

GE Aviation Systems GE Research

₿NREL **High-Voltage Direct Cooled Winding**

GE Research

GE Gas Power

Ceramic composite insulation

BACK-UP: Enhanced HV, altitude capable system

SPM Machine & Integrated Inverter

Leveraging on-going developments

☐ Higher TRL back-ups included

Motor Details

Direct-Drive

- No gear box weight & maximum propulsor integration
- Form-factor enables integrated / distributed inverter
- Inner-rotor, Halbach array surface PM motor
- Minimize rotor yoke iron weight
- Air-cooled rotor via propulsor integration

Transformational Innovation

- Direct-cooled HV / high temperature armature
- Segmented winding for maximum inverter integration w/tooth-wound coils to maximize fault tolerance
- Hollow-conductor coils & core cooling jacket
- Ceramic-based high-temperature insulation system

Key Technology Validation

- ✓ Coil forming & insulation processes developed
- ✓ Winding components characterized at altitude including voltage endurance at altitude & temperature
- ✓ Mechanical characterization & high-pressure tests
- ✓ Coils tested with sCO₂ at 2.7x current density*

Ceramic composite insulation

High-pressure Direct-cooled coils

BACK-UP
Altitude-Proven HV Insulation

High-voltage / pressure isolators

Parameter	Value
Rotational Speed (rpm)	5,000
Mechanical Power Output (kW)	2,000
Voltage (V,I-I, rms)	820
Power Density (kW/kg)	>29
Efficiency @ cruise (%) (including TMS)	95

(*vs direct oil-cooled)

Motor Drive Details

Integrated - Modular Topology

- 6 @ 3-phase power blocks driving modular motor in faulttolerant configuration
- GE 1.2kV Silicon Carbide (SiC) half-bridge modules
- Voltage-source baseline w/current-source alternate
- Reduced harmonics & EMI through optimized modulation

Transformational Innovation

- > Dielectric-filled power module w/embedded cooling
- GE SiC modules with custom substrate
- Additive cold-plate for high-pressure coolant
- High-temperature passive devices & integrated gate drive

Key Technology Validation

- ✓ Customized GE SiC module developed & manufactured
- ✓ SiC module characterized
- ✓ Additively-manufactured cold plates produced
- ✓ Cold plates over-pressure, leak tested & operated in sCO₂

Additively manufactured heat exchanger

High Temperature SiC module

Parameter	Value
System DC Bus Voltage	2,400
Power block rating (kVA)	410
Power Density (kW/kg)	>25
Efficiency @ cruise (%) (including TMS)	>99%

Thermal Management System Details

Transformational Innovation

- Advanced sCO₂-based thermal "bus" for system cooling
- Superior combination of heat capacity w/low pumping power
- Operating temperatures maximized for increased approach temperature to ambient → minimize heat exchanger weight & drag
- Series connection of motor drive, stator core / DC-bus, then motor winding
- Leveraging on-going thermal system development
- High-flow / high-temperature motor driven compressors
- Test rigs for flow/thermal model calibration

Coolant pump & sCO₂ test rigs

Parameter	Value
Loss extraction (kW)	~140
Inverter thermal resistance (K/W)	< 0.005*
Motor stator thermal resistance (K/W)	< 0.003*

(* hotspot to ambient)

2MW @ 5000rpm / 2.4kVdc System Design – Tools & Trades

Bold are "vital few" to system-level optimization

Motor

Motor Drive

Thermal Management

Analytical Tools

- 2&3D EM FEA for steady-state, transient, fault performance, & losses
- 2&3D thermal FEA for steady-state performance
- 2D mechanical FEA with test-derived properties
- Detailed circuit simulation for steady-state, transient performance & losses
- 2&3D thermal FEA for steady-state performance
- 3D mechanical FEA for pressures

- 1D thermal bus flow model
- In-house, closed-form sCO₂ pump & motor sizing tools

Analyses & Trades

- Multi-physics optimization of electrical and rotor mechanical performance
- Thermal / Electrical optimization of stator cooling & rotor magnet selection

- Drive performance & power quality
- Filter weight / performance optimization for power quality & component stress
- EMI characterization
- Control scheme confirmation
- · Multi-physics optimization of cold-plate
- Down-select of motor drive dielectric filler

 Comprehensive system architecture down-select

System

- Detailed system-level 3D CAD for integrated design & assessment
- Propulsor-level system performance model for mission simulation
- Component-level cost & reliability models

☐ Suite of tools with proven prototype pedigree

- ☐ Analyses calibrated to previous & Phase 1 tests
- ☐ Fully leveraging GE Aviation hardware & system models

Parameter	Value
Grav. Power Density (kW/kg)	>11
Vol. Power Density (kW/l)	>13
Cruise Efficiency (%)	>93%
TO & Climb Avg Efficiency (%)	>94%

Updated Risk Assessment

	Almost Certain					
þ	Likely		3*	4	1	
Likelihood	Moderate		1 3*		2	
7	Unlikely		2 5	4	5	
	Rare					
		Insignificant	Minor	Moderate	Major	Catastrophic
		Consequences				

Initial Risk Ranking	#
Inverter Power Module (VSI) w/high-temperature coolant	1
Direct-cooled armature ~2x current density & high temperature coolant	2
Reliable, Altitude-capable ceramic composite insulation	3*
Leak-free, altitude & HV capable motor/inverter electrical / hydraulic connections	4
Complete inverter/motor integration	5

* Initial ceramic composite insulation risk partly mitigated by backup system

- ✓ Successful proof-of-concept pathfinder hardware test campaign
- ✓ 2MW system concept design demonstrates feasibility
- ☐ Demonstrator design & hardware testing in-process

Technology-to-Market Approach

> Continue GE's Electric Aircraft Propulsion Development (10+ yrs.)

- Build on legacy of commercial & military aircraft propulsion systems
- Enhanced by on-going & new government partnerships (NASA, FAA, DOE, ARL)
- Grow GE business supply chain (power electronics, HV electric machines, additive manufacturing, etc.)
- Expand the teams' suite of Intellectual Property (IP)
- ✓ Three patent disclosure filed (insulation and converter technologies)
- Materials, architecture, geometry and design of power dense electric machines and converters
- High-power aviation thermal management systems for electrical systems
- Enabling manufacturing techniques (including additive)
- Envision parallel technology adoption paths
- Early demonstration & adoption for novel commercial & non-commercial aircraft
- Operating benefits of all-electric for small & thin-haul aircraft w/energy storage technology improvements
- Fuel-burn reductions drive step-wise introduction into narrow-body commercial aircraft
- > Leverage cross-industry insight to identify & drive synergies with adjacent industries
- National Renewable Energy Lab (NREL)
- University-of-Wisconsin Madison
- GE Businesses (Gas Power, Renewables, etc.)

Looking Ahead – Phase 1 Completion & Phase 2 Start

Bold are "vital few" to de-risking

Key Risks - Initial Assessment	Phase 1 - Round 1 Pathfinder Hardware	Phase 1 - Round 2 Concept Hardware	Phase 2 Pre-production Hardware
Inverter Power Module (VSI) w/high- temperature coolant	✓ SiC module build & characterization✓ Cold plate production & proof tests	☐ Demonstrator phase leg pump-back test	☐ Converter full-power pump-back test
Reliable, Altitude-capable ceramic composite insulation	✓ Electrical & Mechanical proof tests ✓ Altitude & temperature voltage endurance	☐ EPD-insulated coil module thermal proof test	☐ Statorette multi-factor HALT tests
Direct-cooled armature ~2x current density & high temperature coolant	✓ Proof-of-concept test		□ sCO ₂ rig upgrades & component tests at operational conditions
Leak-free, altitude & HV capable motor/inverter electrical / hydraulic connections	✓ Electrical proof tests	☐ Coil module thermal proof test (back-up insulation)	☐ Winding process qualification tests☐ HV isolator build and test
Complete inverter/motor integration	✓ 2MW system concept design	☐ Demo system concept design	 □ Demo system detailed design □ Device-level reliability assessment □ TMS hardware development & subsystem testing
Current Source Inverter (Alternative)	✓ Architecture selected & concept design	☐ Low-power prototype test☐ Direct-cooled inductor pathfinder build & test☐	☐ Design maturation & comparative performance assessment
Tech-to-Market – Barriers to Adoption	 ✓ Cost, Performance & Reliability models ✓ IP Asset summary & Prior Art ✓ Regulatory landscape & engagement 	 ✓ Market & Landscape Analysis □ Freedom to Operate Assessment □ Additional patent disclosures 	☐ Finalize integrated system demonstration (post Phase 2)

- □ Key risks reduced at completion of phase 1
- ☐ Pre-production hardware design & test at outset of phase 2
- ☐ Execute process qualification & reliability testing in parallel with demo design, built & test

Q & A

https://arpa-e.energy.gov

